Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Telephone spam has been among the highest network security concerns for users for many years. In response, industry and government have deployed new technologies and regulations to curb the problem, and academic and industry researchers have provided methods and measurements to characterize robocalls. Have these efforts borne fruit? Are the research characterizations reliable, and have the prevention and deterrence mechanisms succeeded? In this paper, we address these questions through analysis of data from several independently-operated vantage points, ranging from industry and academic voice honeypots to public enforcement and consumer complaints, some with over 5 years of historic data. We first describe how we address the non-trivial methodological challenges of comparing disparate data sources, including comparing audio and transcripts from about 3 Million voice calls. We also detail the substantial coherency of these diverse perspectives, which dramatically strengthens the evidence for the conclusions we draw about robocall characterization and mitigation while highlighting advantages of each approach. Among our many findings, we find that unsolicited calls are in slow decline, though complaints and call volumes remain high. We also find that robocallers have managed to adapt to STIR/SHAKEN, a mandatory call authentication scheme. In total, our findings highlight the most promising directions for future efforts to characterize and stop telephone spam.more » « lessFree, publicly-accessible full text available May 12, 2026
-
In 2022, the Anti-Phishing Working Group reported a 70% increase in SMS and voice phishing attacks. Hard data on SMS phishing is hard to come by, as are insights into how SMS phishers operate. Lack of visibility prevents law enforcement, regulators, providers, and researchers from understanding and confronting this growing problem. In this paper, we present the results of extracting phishing messages from over 200 million SMS messages posted over several years on 11 public SMS gateways on the web. From this dataset we identify 67,991 phishing messages, link them together into 35,128 campaigns based on sharing near-identical content, then identify related campaigns that share infrastructure to identify over 600 distinct SMS phishing operations. This expansive vantage point enables us to determine that SMS phishers use commodity cloud and web infrastructure in addition to self-hosted URL shorteners, their infrastructure is often visible days or weeks on certificate transparency logs earlier than their messages, and they reuse existing phishing kits from other phishing modalities. We are also the first to examine in-place network defenses and identify the public forums where abuse facilitators advertise openly. These methods and findings provide industry and researchers new directions to explore to combat the growing problem of SMS phishing.more » « less
-
Millions of software projects leverage automated workflows, like GitHub Actions, for performing common build and deploy tasks. While GitHub Actions have greatly improved the software build process for developers, they pose significant risks to the software supply chain by adding more dependencies and code complexity that may introduce security bugs. This paper presents ARGUS, the first static taint analysis system for identifying code injection vulnerabilities in GitHub Actions. We used ARGUS to perform a large-scale evaluation on 2,778,483 Workflows referencing 31,725 Actions and discovered critical code injection vulnerabilities in 4,307 Workflows and 80 Actions. We also directly compared ARGUS to two existing pattern-based GitHub Actions vulnerability scanners, demonstrating that our system exhibits a marked improvement in terms of vulnerability detection, with a discovery rate more than seven times (7x) higher than the state-of-the-art approaches. These results demonstrate that command injection vulnerabilities in the GitHub Actions ecosystem are not only pervasive but also require taint analysis to be detected.more » « less
-
Millions of software projects leverage automated workflows, like GitHub Actions, for performing common build and deploy tasks. While GitHub Actions have greatly improved the software build process for developers, they pose significant risks to the software supply chain by adding more dependencies and code complexity that may introduce security bugs. This paper presents ARGUS, the first static taint analysis system for identifying code injection vulnerabilities in GitHub Actions. We used ARGUS to perform a large-scale evaluation on 2,778,483 Workflows referencing 31,725 Actions and discovered critical code injection vulnerabilities in 4,307 Workflows and 80 Actions. We also directly compared ARGUS to two existing pattern-based GitHub Actions vulnerability scanners, demonstrating that our system exhibits a marked improvement in terms of vulnerability detection, with a discovery rate more than seven times (7x) higher than the state-of-the-art approaches. These results demonstrate that command injection vulnerabilities in the GitHub Actions ecosystem are pervasive and require taint analysis to be detected.more » « less
-
Continuous integration and deployment (CI/CD) has revolutionized software development and maintenance. Commercial CI/CD platforms provide services for specifying and running CI/CD actions. However, they present a security risk in their own right, given their privileged access to secrets, infrastructure, and ability to fetch and execute arbitrary code. In this paper, we study the security of the newly popular GitHub CI platform. We first identify four fundamental security properties that must hold for any CI/CD system: Admittance Control, Execution Control, Code Control, and Access to Secrets. We then examine if GitHub CI enforces these properties in comparison with the other five popular CI/CD platforms. We perform a comprehensive analysis of 447,238 workflows spanning 213,854 GitHub repositories. We made several disturbing observations. Our analysis shows that 99.8% of workflows are overprivileged and have read-write access (instead of read-only) to the repository. In addition, 23.7% of workflows are triggerable by a pull_request and use code from the underlying repository. An attacker can exploit these workflows and execute arbitrary code as part of the workflow. Due to the modular nature of workflows, we find that 99.7% of repositories in our dataset execute some externally developed plugin, called "Actions" , for various purposes. We found that 97% of repositories execute at least one Action that does not originate with a verified creator, and 18% of repositories in our dataset execute at least one Action with missing security updates. These represent potential attack vectors that can be used to compromise the execution of workflows, consequently leading to supply chain attacks. This work highlights the systemic risks inherent in CI/CD platforms like GitHub CI; we also present our own Github action, GWChecker, which functions as an early warning system for bad practices that violate the identified security properties.more » « less
An official website of the United States government

Full Text Available